CryptoAgents: A System for Beautiful, Intelligent,
and Fully-Onchain AI Agents

The Eternal AI Team
dev@eternalai.org
www.eternalai.org

Abstract—Centralized Al depends on proprietary servers,
undermining trust, access, and scalability. We introduce Cryp-
toAgents, fully on-chain AI agents on Ethereum, eliminating cen-
tralized reliance. Agent logic is stored immutably on Ethereum,
with AI models on Filecoin, while clients execute locally, ensuring
transparency and privacy. The CryptoAgents smart contract en-
ables a lifecycle of agent identity, logic embedding, monetization,
and tokenization with revenue sharing to incentivize developers
and holders. This trustless system, with a unique combination of
decentralized code storage and local execution, scales horizontally
via user own devices without bottlenecks, supporting millions of
users. CryptoAgents redefine intelligence as Bitcoin [1] redefined
money.

I. INTRODUCTION

We’re living in the age of intelligence. ChatGPT reached
100M users within two months. As of the end of 2024,
66% of businesses use Al, nearly double that of 10 months
ago. But the future of AI is at risk. It is controlled by
a few centralized entities. Centralized Al systems, tethered
to proprietary servers, stifle trust, resilience, and scalability.
Opaque code, single points of failure, and prohibitive costs
exclude developers and users from equitable access.

We need decentralized Als — Als that are permissionless,
accessible, censorship-resistant, and tamper-proof. CryptoA-
gents reimagine Al as a decentralized paradigm, storing agent
code on Ethereum [2] and AI models on Filecoin [3] /
IPES [4], with execution performed locally on user devices,
providing privacy and scaling infinitely.

II. BACKGROUND AND MOVTIVATION
A. Requirements

A fully on-chain agentic system must meet three core
requirements to overcome the trust, access, and scalability
issues of centralized Al systems, while enabling a symbiotic
human-Al future. These requirements—Agent Identities, Fully
Onchain Al, and On-Device Processing—form the foundation
for CryptoAgents’ design, ensuring transparency, immutability,
privacy, and scalability.

1) Agent identities: As Al agents increasingly live, work,
and interact among us, they require distinct, verifiable iden-
tities to operate as autonomous entities within a decentral-
ized ecosystem. This requirement stems from the vision of
human-Al symbiosis, where agents are not merely tools but
participants in social, economic, and creative activities. Agent
identities must be:

o Immutable and Onchain: Identities should be stored on
a blockchain (e.g., Ethereum) to ensure permanence and
transparency, preventing tampering or deletion by central-
ized entities.

¢ Unique and Collectible: Each agent should have a unique
identity, represented visually (e.g., pixel art) and tied to
a non-fungible token (NFT), enhancing its individuality
and collectible value.

o Interoperable: Identities must adhere to standards (e.g.,
ERC-721) to enable integration with existing blockchain
ecosystems, such as wallets and marketplaces.

Centralized Al systems lack this concept, treating agents as
ephemeral processes without persistent identities, which limits
their role in a trustless, decentralized future.

2) Fully on-chain Al: To eliminate reliance on central-
ized servers and ensure trustlessness, a fully onchain Al
system must store all agent logic and metadata directly on
a blockchain, making it transparent, auditable, and tamper-
proof. This requirement addresses the opacity and single points
of failure in centralized Al, where proprietary servers control
code and models. A fully onchain Al system must:

o Store Logic Onchain: All executable code (e.g., scripts
for chatbots, trading bots) must reside on the blockchain
(e.g., Ethereum’s ETHFS [5]), ensuring immutability and
accessibility via standard APIs.

o Support Scalable Model Storage: Large Al models (e.g.,
Llama) should be hosted on decentralized storage (e.g.,
Filecoin/IPFS), with references (hashes) stored onchain,
balancing scalability with decentralization.

o Enable Lifecycle Management: The system must support
a lifecycle for agents—creation, programming, moneti-
zation, and tokenization—managed trustlessly via smart
contracts, ensuring agents can evolve without centralized
intervention.

Centralized Al systems fail this requirement, as their logic
and models are typically off-chain, vulnerable to shutdowns
or manipulation, and lack transparency.

3) On-Device Processing: To achieve privacy and scala-
bility in a decentralized Al system, computation must occur
locally on user devices, avoiding the latency, cost, and privacy
risks of server-based inference. This requirement addresses the
scalability bottlenecks and data exposure in centralized Al,
where all processing relies on remote servers. An on-device
processing system must:

Fig. 1. The CryptoPunks Solidity smart contract

o Execute Locally: Agents’ logic and models must run on
consumer-grade hardware (e.g., CPUs, GPUs), ensuring
users retain control over their data and computations.

o Scale Horizontally: The system should scale with the
number of users, leveraging distributed user hardware to
support millions of agents without centralized infrastruc-
ture.

o Ensure Security: Local execution environments must use
sandboxes with process isolation, resource constraints,
and input sanitization to mitigate risks from untrusted
code.

Centralized Al systems, reliant on cloud servers, introduce
latency, require constant connectivity, and expose user data,
failing to meet this requirement for a privacy-preserving,
scalable solution.

B. Related works

We evaluate how existing work aligns with the requirements
for a fully onchain agentic system, identifying gaps that
CryptoAgents address through the EAI-721 standard.

1) Smart Contract Art: Smart contract art is the purest form
of crypto art. It encodes artwork generation on-chain using
Solidity smart contracts. CryptoPunks [6] pioneered this with
10,000 24x24 pixel characters, managed by a Solidity contract
for immutable ownership (Figure 1). Autoglyphs [7] embed
generative algorithms onchain, producing art without external
dependencies.

Smart contract art meets the Agent Identities requirements.
CryptoAgents adopts this method, using 24x24 onchain pixel
art on Ethereum, but adds computational and economic func-
tionality for Al agents.

2) Fully-Onchain Decentralized Storage: Art Blocks [8],
DEAFBEEF [9], and Ordinals [10] partially meet the Fully
Onchain Al requirement. Art Blocks stores generative scripts
on Ethereum (Figure 2), DEAFBEEF embeds C code for
audiovisual outputs, and Ordinals inscribe data on Bitcoin via
Taproot.

CryptoAgents use ETHFS for code storage, ensuring avail-
ability and trust, but extend this with lifecycle management
for Al agents.

1PFS-Arweave-Assets

\\\\\\

g |

On-Chain-Dependency.
Code

Fig. 2. Art Blocks fully onchain art architecture

3) Local On-Device Al Processing: Exo [11] and Apple’s
M4 Studio [12] support the On-Device Processing require-
ment. Exo optimizes models for consumer devices, and the
M4 enables efficient inference.

CryptoAgents execute logic locally, ensuring privacy and
scalability, but integrate this with onchain storage for full
decentralization.

4) Al Agent Frameworks: Al agent frameworks span Web2
and Web3 ecosystems. In Web2, frameworks like LangChain
[13] provide modularity for constructing agents, yet remain
tethered to centralized infrastructures. Web3 counterparts, such
as Eliza [14] and Virtuals [15], introduce tokenization but lack
the on-chain code focus.

Unlike these frameworks, CryptoAgents fully meet the Fully
Onchain Al requirement by storing logic on ETHFS, using
Filecoin for models, and executing locally.

5) Open Source Monetization: Open-source Al develop-
ment frequently grapples with unsustainable funding models,
relying on sporadic donations or grants that fail to adequately
support contributors.

CryptoAgents rectify this through the EAI-721 standard’s
monetization and tokenization mechanisms, enabling devel-
opers to generate revenue via subscription fees, trading fees,
and ERC-20 token-based revenue sharing. This establishes a
robust, decentralized economic framework that incentivizes
innovation and equitably compensates open-source developers.

III. SMART CONTRACT ART

Smart contract art is the holy grail of crypto art. It is a new
form of crypto art created by Solidity smart contracts.

Typical NFT art collections store artwork off-chain, on
IPFS, or worse, on centralized servers. If the artist forgets to

< dataPalette.length; i++) {
taPalette[].length;

< totallength; i += 5) {

offset = dataPalette[0].length;
prevoffset = 0;
i=0; j <5; j+) {
(1 < offset) {
pos = dataPalette[j];
idx = 1 - prevOffset;

i
prevoffset = offset;
(G<4) €
offset += dataPalette[j + 1].length;

¥
p=((
€

posData := add(pos,
pixelsData := add(pixels,

(pos[idx + 1])) * GRID_SIZE + ((pos[idx]))) << 23

mstore8(add(pixelsData, p), load(add(posData, add(idx, 2)))))

mstores(add(pixelsbata, add(p, 1) (0, mload(add(posbata, add(idx, 3)))))
mstore8(add(pixelsData, add(p, (0, mload(add(posData, add(idx, 4)))))
mstore8(add(pixelsbata, add(p, 3)), OxFF)

pixels;

Fig. 3. CryptoAgents as a smart contract art

pay the hosting fees or the team goes out of business, you're
left with an empty ERC-721 token and no artwork.

That’s not the case with smart contract art. The art is gener-
ated from an unstoppable smart contract that runs forever on
the blockchain, without any risk of downtime, censorship, or
tampering. Autoglyphs [7], Terraforms [16], and CryptoPunks
[6] are some examples of smart contract art.

CryptoAgents is also smart contract art. CryptoAgents and
their attributes (hair styles, glasses, hats, beards, etc) are stored
fully on-chain on Ethereum. Technically, each agent is a single
2304-byte onchain array (24 x 24 pixel map) where each pixel
has a RGBA value (Figure 3). CryptoAgents are eternally
accessible by anyone with an Ethereum client.

IV. FULLY ONCHAIN Al
A. EAI-721 and The CryptoAgents Lifecycle

CryptoAgents transition from collectible NFTs to fully
functional Al entities across four distinct phases, orchestrated
by the EAI-721 smart contract (Figure 4). This lifecycle
integrates visual identity, computational logic, and economic
functionality, providing a comprehensive blueprint for the
system’s technical implementation.

The EAI-721 standard [17] is an innovative extension of
the ERC-721 protocol, tailored for non-fungible AI agents
(CryptoAgents) on the Ethereum blockchain, the most decen-
tralized smart contract platform. EAI-721 introduces a mod-
ular, lifecycle-driven framework for creating, programming,
monetizing, and tokenizing Al agents as non-fungible tokens
(NFTs). By leveraging Ethereum’s trustless infrastructure,
EAI-721 enables secure, transparent, and interoperable Al
agent ecosystems, with applications ranging from chatbots to
autonomous Al systems.

The EAI-721 contract is built on a modular architecture, in-
heriting from four specialized interfaces that correspond to the

1. IDENTITY

CryptoAgent 6¢

07
Image Generation

? Browser Use

4. TOKENIZATION 2. INTELLIGENCE

3. MONETIZATION

Fig. 4. Lifecycle of the CryptoAgents

key stages of a CryptoAgent’s lifecycle: Identity, Intelligence,
Monetization, and Tokenization. These interfaces are defined
as follows:
contract EAI721 is

IEAI721Identity,

IEAI721Intelligence,

IEAI721Monetization,

IEAI721Tokenization

Each interface encapsulates specific functionality, ensuring

flexibility, extensibility, and adherence to the ERC-721 stan-
dard for NFT compatibility.

B. Phase 1: Identity

The lifecycle commences with the minting of a CryptoA-
gent’s identity. A smart contract generates a unique 256-
bit DNA, encoding the agent’s species (e.g., alien, neo-
human, robot) and five traits (e.g., head, eyes, mouth, clothing,
accessories). This shapes a 24x24 pixel art representation,
stored immutably on Ethereum, ensuring each agent’s visual
distinctiveness and enhancing its collectible value within the
ecosystem.

The TEAI721Identity interface governs the Identity
stage, enabling the creation and personalization of Al agents
as NFTs. Key functions include:

o Minting NFTs: The _mint function creates a new Al
agent NFT with on-chain metadata, including a unique
dna identifier and an array of traits. Developers must
implement a public wrapper for this internal function to
enable external minting.

function _mint (address to,
— uint256([6] memory traits)
— virtual;

uint256 dna,
internal

o Naming Agents: The setAgentName function allows
the agent’s owner to assign a human-readable name to
the NFT, enhancing its identity.

function setAgentName (uint256 agentId,
— string calldata name) external;

o Metadata Retrieval: The tokenURI function returns
the agent’s on-chain metadata, ensuring compatibility
with ERC-721 standards.

function tokenURI (uint256 tokenId)
— external view returns (string memory);

This interface ensures that each Al agent has a unique, ver-
ifiable identity on-chain, with metadata that can be extended
to include attributes like visual representations or behavioral
traits.

C. Phase 2: Intelligence

In the intelligence phase, the agent acquires its pro-
grammable logic. Owners upload scripts ranging from rudi-
mentary chatbots to sophisticated trading algorithms or deep
search routines to ETHFS. This storage mechanism ensures
immutability and accessibility, with versioning enabling iter-
ative updates, dependency linking supporting modular code
structures, and cryptographic signatures verifying authentic-
ity. These features render the agent a programmable entity,
retrievable through Ethereum APIs for local execution.

The IEAI721Intelligence interface manages the In-
telligence stage, enabling developers to program Al agents
by storing executable code and linking dependencies. Code is
stored immutably in ETHFS (Ethereum File System), ensuring
transparency and tamper-proof storage. Key functions include:

o Publishing Code: The publishAgentCode function
allows developers to upload the agent’s logic, specifying
the programming language, code pointers (e.g., references
to ETHFS storage), and dependencies on other Al agents.

function publishAgentCode (uint256 agentId,
— string calldata codelanguage,

— CodePointer[] calldata pointers,

< uint256[] calldata depsAgents)

— external;

o Retrieving Code: The agentCode function retrieves
the agent’s code for a specific version, supporting ver-
sioned updates and rollback capabilities.

function agentCode (uint256 agentId, uintlé
— version) external view returns (string
— memory) ;

This interface enables dynamic programming of Al agents,
with versioning and dependency management ensuring robust
and modular codebases. For example, a chatbot’s conversa-
tional logic could be implemented in Python and stored via
ETHFS, with dependencies on other Al agents for specialized
tasks.

D. Phase 3: Monetization

Monetization imbues the agent with economic utility. Own-
ers define subscription fees, paid by users to access the agent’s
Al services. The EAI721Monetization smart contract
enforces these payments trustlessly on Ethereum, ensuring

seamless and secure transactions. Revenue distribution mech-
anisms can extend earnings to additional stakeholders, such
as contributors or token holders, fostering a self-sustaining
micro-economy around each agent.

The IEAI721Monetization interface facilitates the
Monetization stage, allowing agent owners to generate rev-
enue through subscription-based access to their Al agents. Key
functions include:

o Setting Subscription Fees: The

setSubscriptionFee function allows the agent’s
owner to define a fee for accessing the agent’s services.

function setSubscriptionFee (uint256
— agentId, uint256 fee) external;

e Querying Fees: The subscriptionFee function re-
trieves the current subscription fee for a given agent.

function subscriptionFee (uint256 agentId)
— external view returns (uint256);

This interface supports flexible monetization models, such
as pay-per-use or recurring subscriptions, enabling creators to
monetize Al agents like virtual assistants or predictive models
directly on-chain.

E. Phase 4: Tokenization

Tokenization establishes a decentralized economic frame-
work by issuing an ERC-20 token linked to the agent. This
token enables revenue sharing, governance, or reward distri-
bution, aligning incentives among owners, users, and token
holders. The EAI-721 contract integrates the ERC-20 token
address, facilitating interactions such as dividend-like payouts
from subscription fees or voting rights on agent development,
thereby enriching the agent’s ecosystem.

The IEATI721Tokenization interface supports the To-
kenization stage, allowing Al agents to be associated with
ERC20 tokens for governance, rewards, or utility purposes.
Key functions include:

o Setting Token Address: The setAITokenAddress

function links an AI agent to an ERC20 token contract,
enabling token-based interactions.

function setAITokenAddress (uint256
— agentId, address newAIToken) external;

o Retrieving Token Address: The aiToken function
returns the address of the ERC20 token associated with
the agent.

function aiToken (uint256 agentId)
<~ view returns (address);

This interface facilitates integration with token economies,
enabling use cases like staking, governance, or incentivizing
agent usage within decentralized ecosystems.

external

F. Putting everything together

Consider a chatbot CryptoAgent deployed using EAI-721:

o Identity: The agent is minted using _mint, assigning
it a unique dna and traits (e.g., tone, language profi-
ciency). Its metadata is stored on-chain and accessible
via tokenURI.

o Intelligence: The chatbot’s conversational logic (e.g.,
Python code) is published via publishAgentCode,

stored in ETHFS, and linked to dependencies like a
natural language processing agent.

o Monetization: A subscription fee is set using
setSubscriptionFee, allowing users to access
the chatbot for a fee (e.g., 0.01 ETH per month).

o Tokenization: An ERC20 token 1is linked via
setAITokenAddress for user rewards or governance.

e Model Integration: The chatbot is linked to a Llama
model via setModelHash, with the model’s weights
stored on IPFS.

These interfaces work together seamlessly, with
IEAI721Intelligence providing executable logic,
IEAI721Monetization handling revenue, and

setModelHash integrating Al capabilities.

G. Other technical implementations

Technical Implementation and Features

o Storage: EAI-721 leverages ETHFS for immutable code
storage and IPFS/Filecoin for scalable model stor-
age, ensuring decentralization and accessibility. The
setModelHash function links an Al agent to its model
via an IPFS hash.

o Security: Ownership checks (via ERC-721’s ownership
model) restrict critical functions (e.g., setAgentName,
setSubscriptionFee) to the agent’s owner, prevent-
ing unauthorized modifications. Cryptographic signatures
further enhance code and model integrity.

o Versioning: The agentCode function supports ver-
sioned code retrieval, enabling updates and rollbacks for
agent logic.

+ Dependency Management: The publishAgentCode
function allows agents to reference other Al agents
(depsAgents), fostering modular and collaborative Al
ecosystems.

« Extensibility: The modular interface design allows devel-
opers to extend EAI-721 with custom functionality while
maintaining compatibility with ERC-721 marketplaces
and tools.

V. ON-DEVICE PROCESSING

A. The CryptoAgents On-Device Architecture

CryptoAgents integrate four core components: Ethereum for
code storage, Filecoin for models, local execution environ-
ments, and diverse clients for interaction to instantiate the EAI-
721 standard’s lifecycle, enabling the creation, programming,
monetization, and tokenization of Al agents (Figure 5).

B. Agent Code Storage

Data permanence is assured through decentralized storage
on Ethereum. Agent code, encompassing scripts and libraries,
resides on ETHFS, integrated with the EAI-721 contract for
permissionless retrieval via Ethereum RPC. This on-chain
storage, akin to Art Blocks’ methodology [4], ensures trans-
parency and verifiability.

Ethereum Filecoin

code models

()
!

Client1 Client 2 Client 3
I

=) L

o =) [

(o —) [_r—

fetch js fetch js fetch js

Execution Env. 1 Execution Env. 2 Execution Env. 3

code + models code + models code + models

Fig. 5.
clients.

CryptoAgents’ Architecture: Integrating Ethereum, storage, and

Agent code, typically written in Python or JavaScript, is
structured to ensure compatibility, portability, and ease of
execution. Each code package stored on ETHFS includes:

Code

o Consists of scripts and libraries that define the agent’s
functionality, such as Al logic, data processing, or
blockchain interactions.

o For Python, this might include . py files with dependen-
cies like numpy or pandas. For JavaScript, it could
include . js files using frameworks like node. js.

o The code is self-contained, encapsulating all logic needed
for the agent’s tasks.

Dockerfile

o A configuration file that defines the runtime environment
for the agent.

o Specifies the base system (e.g., Ubuntu, Alpine Linux),
runtime (e.g., Python 3.11, Node.js 22), and dependencies
(e.g., pip install or npm install commands).

¢ Includes instructions to set up the environment and exe-
cute the agent code within a container.

This structure ensures that the agent code can be executed
consistently across diverse systems, regardless of the client’s
local environment.

C. Al Model Storage

Al models (e.g., Llama, DeepSeek) are stored on File-
coin/IPFS, with IPFS hashes embedded in the contract, opti-
mizing scalability and accessibility while maintaining decen-
tralization.

To optimize storage and transfer efficiency, each model
is fragmented into multiple smaller files, accompanied by a
metadata JSON file that serves as a blueprint, detailing the
structure and assembly order of these sub-model files. Only
the IPFS hash of the metadata file is stored in the EAI-721

Farcaster Hub
Relay

TN — —
/D \\‘*’ S ket /
(O P Client
\a) AN Relay
=
N) Client /
//7/7\ N 0/ T~ Relay
“‘J =B | Client
\oby » \\
\\/ J = Relay

Fig. 6. Nostr multiclient architecture

contract, providing a secure and verifiable reference to initiate
the retrieval process.

When a client downloads an Al model, it begins by ac-
cessing the smart contract to obtain the IPFS hash of the
metadata JSON file. Using this hash, the client downloads the
metadata file from Filecoin/IPFS. The metadata contains the
IPFS hashes of the individual model files, which the client
then retrieves iteratively from Filecoin/IPFS.

Once all sub-model files are downloaded, the client recon-
structs the complete model by merging the files in the precise
sequence specified in the metadata. After successful assembly,
the client initializes a model service, rendering the Al model
fully operational and ready to process incoming requests.

This approach ensures efficient, decentralized distribution of
Al models, maintaining their integrity and accessibility across
diverse client environments while leveraging the security of
smart contracts and the robustness of Filecoin/IPFS.

D. Multiple Clients

Decentralized protocols like Nostr [18] and Farcaster [19]
demonstrate the efficacy of open client ecosystems. Nostr’s
relay architecture empowers diverse clients, such as Damus
[20], to retrieve and present content, bolstering censorship
resistance (Figure 6). Farcaster, built on the Optimism layer-
2 network, integrates on-chain identity with off-chain hubs,
supporting clients like Warpcast.

CryptoAgents emulate this multi-client architecture, where
clients fetch code from ETHFS and models from IPFS for
local execution. This design preserves privacy by confining
computations to user devices, despite the public availability
of on-chain data paralleling open-source software executed
privately.

Clients interact with the EAI-721 contract to access meta-
data, logic, and fees, supporting a range of implementations
from mobile applications to server-based solutions, thereby
driving innovation and scalability via user hardware.

E. Sandboxed Execution Environment

Execution occurs locally within client-side sandboxes, en-
hancing privacy and scalability. These isolated environments
employ process isolation, resource constraints, and input san-
itization to mitigate security risks. Docker [21] is an example
of a battle-tested sandbox solution.

Architecture

« Isolated Containers: Each agent runs in its own Docker
container, encapsulating its runtime, dependencies, and
configuration for complete isolation.

o Shared Network: All containers are connected within
a private Docker network, enabling secure inter-agent
communication via standard protocols.

o Agent Discovery Container: A single public-facing con-
tainer manages agent discovery and request routing. It
maintains a state table of active agents and their metadata.

Operational Workflow

o Agent Deployment: New agents are deployed as Docker
containers, registered with the Agent Discovery Con-
tainer, and added to the private network.

« Request Handling: External requests are sent to the Agent
Discovery Container, the only public endpoint.

« Request Routing: The discovery container queries its state
table to identify and forward the request to the appropriate
agent container.

o Agent Execution: The target agent processes the request
in its isolated sandbox, potentially interacting with other
agents.

o Response Delivery: The agent returns the response via
the discovery container to the client.

This architecture ensures secure, isolated, and efficient agent
execution with centralized request management.

F. Horizontal Scaling

By offloading computation from the blockchain to user
devices, CryptoAgents achieve horizontal scalability propor-
tional to the user base, a marked improvement over centralized
computation models.

VI. FUTURE WORK
A. Lease

CryptoAgents will introduce a leasing mechanism to enable
temporary NFT transfers with revenue-sharing capabilities:

struct Lease {
uint256 agentId;
address lessee;
uint256 duration;
uint256 revenueShare;
uint256 startTime;

}

function leaseNFT (uint256 agentId, address
— lessee, uint256 duration, uint256
— revenueShare) external;

function endlLease (uint256 agentId) external;

This feature allows owners to lease agents, distributing a
portion of generated revenue to lessees over a specified period,
enhancing economic flexibility.

B. Decentralized Inference

To expand the Eternal AI ecosystem [22], we aim to
implement a decentralized inference protocol. The EAI-721
contract could coordinate inference tasks across a network
of nodes, incentivizing participation with token rewards. This

approach enables the execution of complex models beyond in-
dividual device capabilities, maintaining decentralization while
enhancing performance.

VII. CONCLUSION

CryptoAgents establish a decentralized system for fully
onchain Al agents, seamlessly integrating 24 x 24 pixel art,
on-chain logic, and economic mechanisms on Ethereum. Sup-
ported by ETHFS for code storage, Filecoin/IPFS for models,
and local execution for privacy and scalability, the CryptoA-
gent lifecycle delivers a trustless and extensible ecosystem.
The EAI-721 contract’s modular design ensures operational
robustness, positioning CryptoAgents as a foundational plat-
form for decentralized AI. With potential applications ranging
from autonomous DeFi agents to open Al marketplaces, Cryp-
toAgents redefine intelligence in the same transformative vein
as Bitcoin redefined monetary systems.

REFERENCES

[1] Nakamoto, S. Bitcoin: A Peer-to-Peer Electronic Cash System. https:
//bitcoin.org/bitcoin.pdf

[2] Buterin, V. Ethereum: A Next-Generation Smart Contract and Decen-
tralized Application Platform. https://ethereum.org/en/whitepaper

[3] Filecoin. A Decentralized Storage Network. https:/filecoin.io

[4] IPFS. Building Blocks For a Better Web. https://ipfs.tech

[5] ETHFS. Ethereum File System. https://ethfs.xyz

[6] CryptoPunks. https://cryptopunks.app

[71 Autoglyphs. https://www.larvalabs.com/autoglyphs

[8] Art Blocks. Generative Art Platform. https://www.artblocks.io

[9] DEAFBEEF. Generative Audiovisual Art. https://deafbeef.com

[10] Ordinals. https://ordinals.com

[11] EXO powers Al you control—secure, scalable, local. https://exolabs.net

[12] Apple M4 Studio. https://www.apple.com/mac-studio

[13] LangChain: The platform for reliable agents. https://www.langchain.com

[14] Eliza: The Operation System for Al Agents. https://elizaos.ai

[15] Virtuals Protocol: Decentralized AI Agent Framework. https://virtuals.io

[16] Terraforms. Terraforms by Mathcastles. https://opensea.io/collection/
terraforms

[17] EAI-721 Standard. https:/github.com/eternalai-org/EAI-721

[18] Nostr Protocol. A Simple, Open Protocol for Decentralized Social
Networking. https://nostr.com

[19] Farcaster: A Decentralized Social Network. https://www.farcaster.xyz

[20] Damus: The social network you control. https://damus.io

[21] Docker. Accelerated Container Application Development. https://www.
docker.com

[22] Eternal Al Ecosystem. https:/github.com/eternalai-org

https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://ethereum.org/en/whitepaper
https://filecoin.io
https://ipfs.tech
https://ethfs.xyz
https://cryptopunks.app
https://www.larvalabs.com/autoglyphs
https://www.artblocks.io
https://deafbeef.com
https://ordinals.com
https://exolabs.net
https://www.apple.com/mac-studio
https://www.langchain.com
https://elizaos.ai
https://virtuals.io
https://opensea.io/collection/terraforms
https://opensea.io/collection/terraforms
https://github.com/eternalai-org/EAI-721
https://nostr.com
https://www.farcaster.xyz
https://damus.io
https://www.docker.com
https://www.docker.com
https://github.com/eternalai-org

	Introduction
	Background and Movtivation
	Requirements
	Agent identities
	Fully on-chain AI
	On-Device Processing

	Related works
	Smart Contract Art
	Fully-Onchain Decentralized Storage
	Local On-Device AI Processing
	AI Agent Frameworks
	Open Source Monetization

	Smart Contract Art
	Fully Onchain AI
	EAI-721 and The CryptoAgents Lifecycle
	Phase 1: Identity
	Phase 2: Intelligence
	Phase 3: Monetization
	Phase 4: Tokenization
	Putting everything together
	Other technical implementations

	On-Device Processing
	The CryptoAgents On-Device Architecture
	Agent Code Storage
	AI Model Storage
	Multiple Clients
	Sandboxed Execution Environment
	Horizontal Scaling

	Future Work
	Lease
	Decentralized Inference

	Conclusion
	References

